GCRM IO API (Users Guide)

1.0 GCRM IO API Overview

The purpose of this document is to provide a users guide for the GCRM IO API. This API can be linked up to several models and used to control what data is written to netCDF files, how often, how many fields are written to files, and what size files should be.

Users must first decide which model arrays will be written to the output netCDF files and then link this data to the API. This occurs in two steps. The first is to create a data configuration file that describes all fields that will be used in the API, what their characteristics are, and how they should appear if they are written to an output file. The second step is to register pointers to the data described in the configuration file in the API by calling subroutines that tell the API where data is located. These two steps must be applied to any data that will be exported to a file.

Finally, the user creates a file that describes the netCDF files that will be created by the API and what fields will be written to those files. This includes the file names, what fields are written to files, and how often to write data to the files.

The API has been tested using two GCRM models. The first is the multi-grid model, and the second is the hydrostatic model. Testing included using the API for both these models on a variety of different model resolutions and a variety of different processor configurations.

1.0.1 Building the IO API

The de facto "configure" script is used to build the IO API. Traditionally, functional software can be built without any options passed to this script (see "configure --help" for the full list of options.) However, in the case of the IO API the user must at least specify which underlying IO library to use. These include "--with-pnetcdf", "--with-netcdf4", and "--with-netcdf3". A warning will be issued if no IO library is selected. In some cases it is necessary to specify to configure the exact directories in which the library and its header file live, or for example "--with-pnetcdf-lib=/path/to/library/dir" and "--with-pnetcdf-include=/path/to/library/include" respectively. If configure is unable to locate both the library and its header file it will abort with an error message.

At this point, we recommend building with these options:

--with-pnetcdf

--with-interleaving

After running ./configure, run “make”. A library, libgio_api.a will be generated in the .libs subdirectory. This library must be specified when linking your model to the API.

2.0 Linking Model Data to the API

We will provide you with a copy of our copy of the hydrostatic model. This version of the model may/may not be completely compatible with the model you are running, but it can be used as an example.

The main routine you need is the setup_data subroutine, which is part of the source/_atmos/atmos_main.F file. The setup_data subroutine is responsible for registering the grid data in the API and pointers to several fields within the model. The subroutine calls in setup_data can be used as a template for registering other fields in the model.

The first section of setup_data determines sub-block indices via calls to get_big_block_index(). This function returns the i,j indices of the lower corner of the block passed into the subroutine call as well as the panel index (returned as a number from 1-10) for the panel on which the block is located. This information can then be used to set up calls to the gio_register functions described below.

The second section of setup_data connects other non-grid data to the API. Refer to the table below for a list of hydrostatic model fields that are used by the API.

	Hydrostatic model
	GCRM IO

	
	

	prs
	pressure

	tht
	temperature

	geopot
	geopotential

	wind_crn(x)
	u

	wind_crn(y)
	v

	wind
	wind

	zeta_lyr
	layers

	zeta
	interfaces

3.0 Data Configuration File (data.config)

Once you have successfully connected the model data to the API, it is a relatively simple matter to construct the file used by the API to describe the model data in terms used for the output netCDF files.

We use a “data.config” file for this purpose. In this file, you describe any global metadata, each potential data field, the units for that field, its dimensions, and so on. Note that all fields that are connected to the API in the setup_data routine must be described in the data.config file or the API will throw an error. Data fields in the data.config file that are not connected to data in the API will not throw an error, provided that they are not listed in the file.config file either.

3.1 data.config Format Details, Metadata Specification
The first section of the data.config file, the “properties” section, is used to specify properties. Properties, as used by the API, are metadata that the user wants written to each netCDF file that will be generated by the API. This “metadata” is recorded in the global attributes section, near the bottom of the netCDF header. These properties include anything that would be useful to describe the nature of the simulation being executed, any particularly useful parameters being used to control the simulation, any references the user wants recorded in the netCDF file and so forth. Here is an example of this metadata section:

// global attributes:

 :Conventions = "CF-1.4" ;

 :title = "Test hydrostatic model with API" ;

 :institution = "PNNL" ;

 :source = "hydrostatic model, test version" ;

 :references = "Not Available" ;

 :comment = "Some appropriate comment" ;

A special “history” metadata item is automatically recorded in the global metadata section by the API.

 :history = "created on: 2009-03-17 at 05:34:39" ;

3.2 Properties specification in detail
A property specification consists of the property keyword, a property name, and a value, as follows:

“property” keyword, must be first item on the record

A “name”, any useful property “name”, which is the second value on the record

A “value”, enclosed in quotes (“), the value to be associated with “name”, which is the third entry on a property record.

Here is a sample property section:

property Conventions "CF-1.0"

property title "Test hydrostatic model with API"

property institution "PNNL"

property source "hydrostatic model, test version"

property references "Not Available"

property comment "Some appropriate comment"

3.3 Data Field Specification in Detail

The remainder of the data.config file describes data fields to the API. The field definition section consists of several key/value pairs. The following keywords are required for each field:

name

long_name

type

dimension

The “name” keyword specifies the name of the variable. This name must match a known name, as specified when connecting the model data to the API, which is described in section 2. This “name” is the name of the field that will be used in the output netCDF file. The “name” keyword is the common link between data being registered in the setup_data routine and the data description in the data.config file.

NOTE: While parsing the data.config file, a new “name” keyword signifies the beginning of a new field definition.

The “long_name” is a description of what the field actually contains. This is a text string, enclosed in quote (“) characters.

The “type” is the data type for the output netCDF file. Possible values are “float” or “integer”.

Note that double precision model data is converted to float automatically by the API, since floating point precision is sufficient for post-processing data analysis in most cases.

The “dimension” keyword specifies the dimension(s) to be used in the output netCDF files. Typical dimension values are (and there can be more than one of these on the dimension record):

time

cells

cellcorners

celledges

i_cell_corners

i_cell_edges

cellneighbors

layers

interfaces

i_uniq_corner

At least one dimension must be specified on the dimension specification, and often several dimensions are specified.

The “time” dimension is fairly obvious, as it is used to record the time-varying information about a field. Note that if a field does not have a time dimension, it is assumed to be static and will only be written out once to a file.

The “cells” dimension is used for cell-based data. Each model “cell” will be written to a specific location in the cells dimension.

The “cellcorners” dimension is assigned a value of “6” by the API. Up to 6 corner indices exist for corner-based data

.

The “celledges” dimension is also assigned a value of “6” by the API. Up to 6 edge indices exist for edge-based data.

The “i_cell_corners” dimension is used for to specify a dimension for all unique corners in the grid. This equates to a dimension of

2 * 10 * 4res, where “res” is the problem resolution, e.g. level_max
The “i_cell_edges” dimension is used to specify a dimension for all unique edges in the grid. This equates to a dimension of:

3 * 10 * 4res, where “res” is the problem resolution

The “cellneighbors” dimension is also assigned a value of “6” by the API. Up to 6 neighboring cell indices will be recorded, typically in a “cell_neighbors” field.

The “layers” dimension specifies the vertical layers for the model. Its value is obtained from the model directly.

The “interfaces” dimension specifies the vertical interfaces for the model. Its value is obtained from the model directly.

Sample descriptors for two hydrostatic model fields section are shown below:

name time

units "days since 1901-01-01"

long_name "Time"

dimension time

type double

standard_name time

calendar "no leap year"

name pressure

units Pa

long_name "Pressure"

dimension time cells layers

type float

coordinates "grid_center_lat grid_center_lon"

Optional keywords (and associated values) are allowed by the API. Basically, you can supply any keyword/value pairs you want for a particular field. Typical keywords might be as follows:

output_name

units

standard_name

component

“output_name” is a special keyword that allows the user to specify an alternate name for a given field in the output netCDF files. That is, if the name specified via setup_data is not the name the user wants for the field in the output netCDF files, the output_name will be used instead. Note that this is an optional attribute; if not used, then the name specified in the call to setup_data will be used.

Note: Some post-processing software may require that certain field-level metadata be included for proper parsing of the netCDF files. Consult the documentation for any post-processing software you use (or potentially might use) to make sure all that required metadata are specified.

Some field definitions are required. Those are a field for “time”, any “grid descriptor” fields, and any model field that has been connected to the API via the setup_data subroutine, as described in section 2.

4.0 Output File Configuration

After constructing the data.config file, the next step is to construct a file that specifies how to write netCDF files. The file used for this is named “file.config”. The file.config controls which netCDF files are generated, which fields are stored in those files and how often.

file.config is basically a set of records in a keyword/value(s) format. Here is an example of a file.config that specifies generating a single netCDF file:

base_name "all_fields_"

base_directory "./"

frequency 3600

offset 3600

nsamples 5

field time

field grid_center_lat

field grid_center_lon

field grid_corner_lat

field grid_corner_lon

field area

field cell_neighbors

field layers

field pressure

The first record for a particular netCDF file specification is the “base_name” keyword. The value associated with base_name is the name for the netCDF file(s) that will be written. Note that the GCRM IO API will add a string of characters that specifies the time for the first sample in the file. More information on this feature will follow.

NOTE: While the API software is parsing the file.config, when it encounters a new “base_name” keyword, this indicates the beginning of a new file specification.

The “base_directory” keyword specifies the directory into which the netCDF file will be generated. In the example above, the netCDF files will be generated in the current directory (“./”).

The “frequency” keyword specifies how often data will be written to the file. This value is specified in model simulated seconds.

The “offset” keyword specifies an offset from the beginning of the simulation, after which the first data will be written to the netCDF files. This option is not currently implemented by the API.
The “nsamples” keyword specifies how many time steps are allowed in individual netCDF files. In the example above, we specify an arbitrary maximum of 5 time steps in each file. When the software attempts to store the 6th sample, a new file with an appropriate filename will be constructed.

An example filename constructed by the API is:

all_fields_190101_000000.nc

Where:

“all_fields_” is as specified in file.config (base_name)

“1901” is the model simulated year, in this case 1901

“0101” is the model simulated month and day, in this case for January 01.

“_000000” is the model simulated hour, minutes and seconds (hhmmss).

The year, month, day, hour, minute and seconds are computed from the model simulation time.

Following the above keywords is a list of fields to place in the netCDF file. There are several grid specification fields (grid_center_lat, grid_center_lon, grid_corner_lat, grid_corner_lat, area, layers and cell_neighbors), the “time” field, and the time-varying fields. In this example several fields, plus the grid information is placed in a “all_fields*.nc” file.

Note: Current limitations in the netCDF libraries require that for high resolution simulations (level_max=11 and higher), separate files must be created for each time-varying field. For smaller resolution simulations, you can place several time-varying fields in a single netCDF file.

Example 1: Create one netCDF file with several time-varying fields in it

base_name "allvars_"

base_directory "./"

frequency 800

offset 3600

nsamples 12

field time

field grid_center_lat

field grid_center_lon

field grid_corner_lat

field grid_corner_lon

field area

field cell_neighbors

field cell_corners

field layers

field pressure

field geopotential

field u

field v

field wind

field geopotential

Example 2: Create 2 files, with one time-varying field in each file.

base_name "pressure_"

base_directory "./"

frequency 3600

offset 3600

nsamples 5

field time

field grid_center_lat

field grid_center_lon

field grid_corner_lat

field grid_corner_lon

field area

field cell_neighbors

field layers

field pressure

base_name "geopotential_"

base_directory "./"

frequency 3600

offset 3600

nsamples 5

field time

field grid_center_lat

field grid_center_lon

field grid_corner_lat

field grid_corner_lon

field area

field cell_neighbors

field interfaces

field geopotential

5.0 List of API subroutines and parameters
The subroutines that are currently implemented in the API and used in actual simulation code are described below.
gio_init(level_max,

 nlevels,

 block_size,

 i_dimension,

 j_dimension,

 data_config_name,

 number_of_io_procs)

integer level_max: resolution exponent of the grid

integer nlevels: number of cell-centered layers in the model

integer block_size: The number of cells (not including ghost cells) in each data block

integer i_dimension: The i-dimension (including ghost cells) in each block

integer j_dimension: The j-dimension (including ghost cells) in each block

character(*) data_config_name: name of the data configuration file

integer number_io_procs: number of IO processors used by the API. This must be less than or equal to the number of processors.
The gio_init() routine is called once, at the beginning of a model execution to initiate the API.
gio_terminate()
The gio_terminate() routine is called once at the end of a model execution to terminate the API.
gio_driver(icount,

 time)
integer icount: a counter that is incremented at every timestep

double precision time: the current simulation time, in seconds since January 1, 1901.
The gio_driver() routine is called once per model time step. It determines if data should be written to netCDF files, and if so, writes data to those files.

gio_grid_setup(neighbors,

 cell_coordinates,

 corner_coordinates,

 area,

 panel_id,

 lo_indices,

 hi_indices)

integer neighbors(6,*): a list of cell neighbors for each cell. The list should contain the global (not local) indices of the neighbors

double precision cell_coordinates(3,*): the location of each cell center, expressed as the x,y,z coordinates of a point on the unit sphere

double precision corner_coordinates(3,6,*): the location of the corners of each cell, expressed as the x,y,z coordinates of a point on the unit sphere

double precision area(*): the area of each grid cell

integer panel_id: the panel index (as a number between 0-9) of the block of data being registered in this subroutine call

integer lo_indices(2): the lower i,j indices of the block being registered

integer hi_indices(2): the upper i,j indices of the block being registered
The gio_grid_setup() routine is called during model initiation. This routine is used to connect model grid data to the API. The first non-ghost cell value for neighbors, cell_coordinates, and corner coordinates should be passed into this subroutine.
gio_grid_setup_pole(neighbors,

 cell_coordinates,

 corner_coordinates,

 area,

 pole_id)
integer neighbors(6,*): a list of cell neighbors for the polar cell. The list should contain the global (not local) indices of the neighbors

double precision cell_coordinates(3,*): the location for the polar cell center, expressed as the x,y,z coordinates of a point on the unit sphere

double precision corner_coordinates(3,6,*): the location of the corners for the polar cell, expressed as the x,y,z coordinates of a point on the unit sphere

character(1) pole_id: a single character using the value ‘n’ or ‘s’ signifying the north or south pole
The gio_grid_setup_pole() routine is called during model initiation. This routine

is used to connect grid data for the north and south poles to the API.
gio_register_dfield(data_name,

 data_ptr,

 lo_indices,

 hi_indices,

 panel_id,

 length)

character() data_name: A name to use in netcdf files (field name for this variable). This name must also appear in the data configuration file

double precision data_ptr: location in memory of the start of model array

integer lo_indices(2): the lower i, j indices of the block being registered

integer hi_indices(2): the upper i, j indices of the block being registered

integer panel_id: the panel identifier

integer length: size of the array in which the block appears

The gio_register_dfield() routine is called once per model field that needs to be connected to the API for storage in netCDF files. The first non-ghost cell value for the field should be passed in as the data_ptr value.

gio_register_dpole(data_name,

 data_ptr,

 pole_id,

 length)

character() data_name: A name to use in netcdf files (field name for this variable). This name should also appear in the data configuration file.

double precision data_ptr: location in memory of the start of model array

character(1) pole_id: a single character using the value ‘n’ or ‘s’ signifying the north or south pole
integer length: size of the block of data being registered. For pole data this should still be equal to the size of the array in which the pole data appears.

The gio_register_dpole() routine is called once per pole, for each model field being connected to the API for storage in netCDF files.
gio_register_dlevel(data_name,

 data_ptr,

 length)

character() data_name: A name to use in netcdf files (field name for this variable). This name also should appear in the data configuration file.

double precision data_ptr: location in memory of the start of model array

integer length: size of the block of data being registered.
The gio_register_dlevel() routine is called to register layer or interface data to the API.

6.0 API Caveats

We recently encountered a problem writing the wind “corner” data to netCDF files, during a level_max=11 hydrostatic model simulation. We seem to be encountering a limit on variable file size for one of the grid arrays related to corner data. We are actively pursuing that with the parallel netCDF developers.

We have not tested the API behavior on a model restart. We think all the logic is in place to properly continue adding data to netCDF files on a model restart, but problems may be encountered. We will solve those problems should they arise.

7.0 API Developer Contacts

Annette Koontz, PNNL

Annette.koontz@pnl.gov

509-375-3609

Bruce Palmer, PNNL

Bruce.palmer@pnl.gov

509-375-3899

Karen Schuchardt

Karen.schuchardt@pnl.gov

509-375-6525

