
Prabhat
LBNL

Jeff Daily
PNNL

Karen Schuchardt
PNNL

1

Workshop on High-Resolution Global Modeling
June 16, 2010

 Design and Testing of a Global Cloud
Resolving Model (GCRM)
◦ Dave Randall, Ross Heikes, Celal Konor, CSU

 Community Access to Global Cloud
Resolving Model Data and Analyses
◦  Bruce Palmer, Annette Koontz, PNNL

2

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

3

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

4

 Recursive subdivision of an icosahedron
5

 N = 10 * 22R + 2
 ~17B cells for 25 levels at R=13

6

R Cell width (Km) Number of Cells

10 8 10,485,762

11 4 41,943,042

12 2 167,772,162

13 1 671,088,642

7

 ~20 variables
 16-48 GB per variable
 Dump snapshots every simulated hour
 Overall
◦  ~0.3-1 TB/snapshot
◦  ~1-10 PB of simulation data for one simulated

year

8

 Geodesic grid
◦  Data at multiple locations
  Cell center, corners, edge mid-points
  Interfaces, Layers
  Need custom tesselation algorithms

 Cubed-sphere grid

 Want to store and analyze data in its native
representation

  Current approach is to regrid

9

 Large Data
◦  Parallel I/O
◦  Parallel rendering
◦  Parallel analysis

 Data is too large to move over a network

 Existing tools face serious scaling
problems
◦  nco, ncl, cdat, ferret, matlab, …

10

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

11

 Metadata conventions for geodesic mesh
 All types of mesh variables/layout
◦  cell/corner/edge centered

 Minimize duplicated data
◦  unique vertices, corners, edges

 Use CF conventions wherever possible
 Ease-of-import for other vis/analysis apps
 Current implementation in NetCDF-3
◦  Future plans for NetCDF-4

12

13

Dimensions:
 interfaces = 96;
 layers = 95; // interfaces -1
 cells = 41943042; // r11
 corners = 83886080; // total unique corners in the grid; 2 * (cells - 2)
 edges = 125829120; // total unique edges in the grid; 3 * (cells - 2)
 cellcorners = 6; // max corners per cell
 celledges = 6; // max edges per cell
 cellneighbors = 6; // max neighbors per cell
 time = UNLIMITED ; // (1 currently)

// Scalar for grid discovery
 int grid;
 grid:standard_name = "grid";
 grid:external_ref = "some uri";
 grid:cell_type = "hex";
 grid:index_start = 0s;
 // topology references
 grid:cell_edges = "cell_edges";
 grid:cell_corners = "cell_corners";
 grid:cell_cells = "cell_neighbors";
 grid:edge_corners = "edge_corners";
 // geometry references
 grid:coordinates_cells = "grid_center_lon grid_center_lat";
 grid:coordinates_corners = "grid_corner_lon grid_corner_lat";
 grid:coordinates_edges = "grid_edge_lon grid_edge_lat";

14

 // Geometry
 float grid_center_lat(cells)
 grid_center_lat:units = "radians";
 grid_center_lat:standard_name = "latitude";
 grid_center_lat:bounds = "corner_cell_map_lat";
 float corner_cell_map_lat(cells,cellcorners);

 float grid_corner_lat(corners):
 grid_corner_lat:standard_name = "latitude";
 grid_corner_lat:units = "radians";

 float grid_edge_lat(edges):
 grid_edge_lat:standard_name = "latitude";
 grid_edge_lat:units = "radians”;

// Topology
 int cell_corners(cells, cellcorners);
 cell_corners:traverse = "counter-clockwise";
 cell_corners:long_name = "Index of cell corners";

 int cell_edges(cells, celledges);
 cell_edges:traverse = "counter-clockwise";

 int edge_corners(edges, 2);

 int cell_neighbors(cells, cellneighbors);
 cell_neighbors:traverse = "counter-clockwise”;

15

variables:
 // cell example
 float pressure(time, cells, layers) ;
 pressure:long_name = "Pressure" ;
 pressure:units = "Pa" ;
 pressure:coordinates = "grid_center_lat grid_center_lon" ;
 pressure:grid = "grid" ;
 pressure:location = "center" ;
 pressure:z = "layers" ;

 // corner example
 float u(time, corners, layers) ;
 u:long_name = "U wind component at cell corners" ;
 u:units = "m/sec" ;
 u:coordinates = "grid_corner_lat grid_corner_lon" ;
 u:grid = "grid" ;
 u:location = "corner" ;
 u:z = "layers" ;

 // edge example
 float wind(time, edges, layers) ;
 wind:long_name = "Wind component at faces" ;
 wind:units = "m/sec" ;
 wind:coordinates = "grid_edge_lat grid_edge_lon" ;
 wind:grid = "grid" ;
 wind:location = "edge";
 wind:z = "layers" ;

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

16

 Handle large data
 Rich vis/analysis feature set
 Remote vis capabilities
◦ Keep data at NERSC/LCF

 Deploy on workstations/laptops
 Multiple OS support

17

  Free, open-source software
 12 active developers across 5 institutions
 Rich visualization and analysis operations
 Python Scripting
 Cross-platform support
 Parallel rendering on large clusters
 Demonstrated scalability on large

problems
◦  2 TZ on 30K franklin cores

18

 General purpose visualization tool
◦ Not climate specific
◦  Limited projections, GIS capabilities

 Mapping of analysis capabilities might be
clunky

 Python scripting capabilities are limited
◦ Not as powerful as CDAT
◦  Parallel extensions under development

19

 VisIt plugin directly imports Geodesic grid
◦  Serial version
◦  Parallel version w/ MPI in development

  Fully supports GCRM data model
◦ All mesh types and variables are supported
◦ Different tessellations/meshes are created

 http://vis.lbl.gov/~prabhat/Incite19/

20

Variable de!ned at
cell centers (face)

Variable de!ned at
cell corners (vertex)

Variable de!ned at
cell edges (edge)

Requires interpolation
to cell centers (blue points)
using information from
surounding corners (green
points)

Straightforward. No interpolations. Requires interpolation
to cell centers (blue points)
using information from
surounding edges(green
points)

21

22

23

  VisIt
◦ Climate friendly skin
◦ Custom plot types
◦ Domain specific operators and expressions
  zonal means

◦  Performance optimization

  Integration with other emerging grid
standards (Cubed-sphere)

24

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

25

  Why yet another analysis package?
◦  Analysis must be data parallel (vs task)

  ~0.3-1 TB/snapshot
  Must use parallel IO to be efficient

  Or read smaller chunks one at a time
  1 TB takes nearly 3 hours to read at 100 MB/s

◦  Support geodesic (unstructured) grids
◦  Support explicit topology variables

  During subsetting
  As part of analysis (e.g. neighboring cells)

  When to use it?
  Feed output into another analysis package (e.g. VisIt)
  Server-side data reduction prior to transfer
  Creation of derived datasets
  Interpolate to regular grid

26

 What is pagoda?
◦ Command-line tools (similar to NCO)
◦ C++ API for writing custom analyses

 Under the hood
◦ Global Arrays toolkit
  Shared-memory abstraction over distributed arrays
  One-sided communication (versus MPI Send/Recv)
  Scalability up to 200K processes (Gordon Bell

Finalist at SC 2009 by Apra et. al.)
◦  Parallel Netcdf

27

 pgsub – the subsetter
◦  Select variable(s), Lat/Lon box
◦ Correctly reindexes topology variables

 Rest are slated by FY2010 end
◦  pgra – record averager
◦  pgwa – weighted average
◦  pgflint – file interpolator
◦  pgrint – grid interpolator

 ** names subject to change **

28

  Test dataset (~500 GB)
◦  24 timesteps
◦  12.1875GB per step of edge var
◦  4 kilometer resolution (R=11)
◦  Subset was 20N,-20S,160E,90E

  Roughly 6.5% of the global data

  Scalable to 2K cores
  I/O was 60%-90% of the time
◦  That’s all pgsub does
◦  Doesn’t use pnetcdf non-

blocking
◦  Achieved 4.5GB/s write, 2GB/s

read
  Morton ordering allowed for

optimization (blue) versus
“read everything” (yellow)

100

1000

10000

64

12
8

25
6

51
2

10
24

20
48

 T
im

e
(s

ec
on

ds
)

Cores

29

  Key interfaces: Dataset, Variable, Array, FileWriter,
Grid
◦  Datasets can represent one or more files

  NetCDF Markup Language support planned
◦  Variables are read-only

  Reading places data into an Array (and into memory)
  Data is not stored in memory until read from Variable
  User is responsible for managing memory
◦  Perform operations on Arrays

  Arrays are multidimensional data objects
  Dimension reduction via averaging
  Basic math (element-wise between Arrays)
  Cast arrays to different types as needed (automatic or manual)
  Access process-local data for custom operations

◦ Reminiscent of Java NetCDF API

30

 Grid interface
◦ Handles explicit topology
◦ Most grids can be represented in an

unstructured way
◦  “translation unit” for most grids
◦  Interpolation
  Grid coarsening
  From geodesic to regular

31

 Zonal/meridional operations
 Performance optimization
  Integration with other emerging grid

standards (Cubed-sphere)
 Complete support for regular grids
 Conservative interpolation

32

 LBNL/NERSC
◦ Mark Howison, Janet Jacobsen, Wes Bethel
◦ Michael Wehner

 PNNL
◦  Bruce Palmer, Annette Koontz

 Colorado State University
◦ Ross Heikes, Dave Randall

33

34

35

36

37

