
Prabhat
LBNL

Jeff Daily
PNNL

Karen Schuchardt
PNNL

1

Workshop on High-Resolution Global Modeling
June 16, 2010

 Design and Testing of a Global Cloud
Resolving Model (GCRM)
◦ Dave Randall, Ross Heikes, Celal Konor, CSU

 Community Access to Global Cloud
Resolving Model Data and Analyses
◦  Bruce Palmer, Annette Koontz, PNNL

2

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

3

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

4

 Recursive subdivision of an icosahedron
5

 N = 10 * 22R + 2
 ~17B cells for 25 levels at R=13

6

R Cell width (Km) Number of Cells

10 8 10,485,762

11 4 41,943,042

12 2 167,772,162

13 1 671,088,642

7

 ~20 variables
 16-48 GB per variable
 Dump snapshots every simulated hour
 Overall
◦  ~0.3-1 TB/snapshot
◦  ~1-10 PB of simulation data for one simulated

year

8

 Geodesic grid
◦  Data at multiple locations
  Cell center, corners, edge mid-points
  Interfaces, Layers
  Need custom tesselation algorithms

 Cubed-sphere grid

 Want to store and analyze data in its native
representation

  Current approach is to regrid

9

 Large Data
◦  Parallel I/O
◦  Parallel rendering
◦  Parallel analysis

 Data is too large to move over a network

 Existing tools face serious scaling
problems
◦  nco, ncl, cdat, ferret, matlab, …

10

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

11

 Metadata conventions for geodesic mesh
 All types of mesh variables/layout
◦  cell/corner/edge centered

 Minimize duplicated data
◦  unique vertices, corners, edges

 Use CF conventions wherever possible
 Ease-of-import for other vis/analysis apps
 Current implementation in NetCDF-3
◦  Future plans for NetCDF-4

12

13

Dimensions:
 interfaces = 96;
 layers = 95; // interfaces -1
 cells = 41943042; // r11
 corners = 83886080; // total unique corners in the grid; 2 * (cells - 2)
 edges = 125829120; // total unique edges in the grid; 3 * (cells - 2)
 cellcorners = 6; // max corners per cell
 celledges = 6; // max edges per cell
 cellneighbors = 6; // max neighbors per cell
 time = UNLIMITED ; // (1 currently)

// Scalar for grid discovery
 int grid;
 grid:standard_name = "grid";
 grid:external_ref = "some uri";
 grid:cell_type = "hex";
 grid:index_start = 0s;
 // topology references
 grid:cell_edges = "cell_edges";
 grid:cell_corners = "cell_corners";
 grid:cell_cells = "cell_neighbors";
 grid:edge_corners = "edge_corners";
 // geometry references
 grid:coordinates_cells = "grid_center_lon grid_center_lat";
 grid:coordinates_corners = "grid_corner_lon grid_corner_lat";
 grid:coordinates_edges = "grid_edge_lon grid_edge_lat";

14

 // Geometry
 float grid_center_lat(cells)
 grid_center_lat:units = "radians";
 grid_center_lat:standard_name = "latitude";
 grid_center_lat:bounds = "corner_cell_map_lat";
 float corner_cell_map_lat(cells,cellcorners);

 float grid_corner_lat(corners):
 grid_corner_lat:standard_name = "latitude";
 grid_corner_lat:units = "radians";

 float grid_edge_lat(edges):
 grid_edge_lat:standard_name = "latitude";
 grid_edge_lat:units = "radians”;

// Topology
 int cell_corners(cells, cellcorners);
 cell_corners:traverse = "counter-clockwise";
 cell_corners:long_name = "Index of cell corners";

 int cell_edges(cells, celledges);
 cell_edges:traverse = "counter-clockwise";

 int edge_corners(edges, 2);

 int cell_neighbors(cells, cellneighbors);
 cell_neighbors:traverse = "counter-clockwise”;

15

variables:
 // cell example
 float pressure(time, cells, layers) ;
 pressure:long_name = "Pressure" ;
 pressure:units = "Pa" ;
 pressure:coordinates = "grid_center_lat grid_center_lon" ;
 pressure:grid = "grid" ;
 pressure:location = "center" ;
 pressure:z = "layers" ;

 // corner example
 float u(time, corners, layers) ;
 u:long_name = "U wind component at cell corners" ;
 u:units = "m/sec" ;
 u:coordinates = "grid_corner_lat grid_corner_lon" ;
 u:grid = "grid" ;
 u:location = "corner" ;
 u:z = "layers" ;

 // edge example
 float wind(time, edges, layers) ;
 wind:long_name = "Wind component at faces" ;
 wind:units = "m/sec" ;
 wind:coordinates = "grid_edge_lat grid_edge_lon" ;
 wind:grid = "grid" ;
 wind:location = "edge";
 wind:z = "layers" ;

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

16

 Handle large data
 Rich vis/analysis feature set
 Remote vis capabilities
◦ Keep data at NERSC/LCF

 Deploy on workstations/laptops
 Multiple OS support

17

  Free, open-source software
 12 active developers across 5 institutions
 Rich visualization and analysis operations
 Python Scripting
 Cross-platform support
 Parallel rendering on large clusters
 Demonstrated scalability on large

problems
◦  2 TZ on 30K franklin cores

18

 General purpose visualization tool
◦ Not climate specific
◦  Limited projections, GIS capabilities

 Mapping of analysis capabilities might be
clunky

 Python scripting capabilities are limited
◦ Not as powerful as CDAT
◦  Parallel extensions under development

19

 VisIt plugin directly imports Geodesic grid
◦  Serial version
◦  Parallel version w/ MPI in development

  Fully supports GCRM data model
◦ All mesh types and variables are supported
◦ Different tessellations/meshes are created

 http://vis.lbl.gov/~prabhat/Incite19/

20

Variable de!ned at
cell centers (face)

Variable de!ned at
cell corners (vertex)

Variable de!ned at
cell edges (edge)

Requires interpolation
to cell centers (blue points)
using information from
surounding corners (green
points)

Straightforward. No interpolations. Requires interpolation
to cell centers (blue points)
using information from
surounding edges(green
points)

21

22

23

  VisIt
◦ Climate friendly skin
◦ Custom plot types
◦ Domain specific operators and expressions
  zonal means

◦  Performance optimization

  Integration with other emerging grid
standards (Cubed-sphere)

24

 Motivation
◦ GCRM
◦  Large Data

 Data Models
 Visualization
 Analysis

25

  Why yet another analysis package?
◦  Analysis must be data parallel (vs task)

  ~0.3-1 TB/snapshot
  Must use parallel IO to be efficient

  Or read smaller chunks one at a time
  1 TB takes nearly 3 hours to read at 100 MB/s

◦  Support geodesic (unstructured) grids
◦  Support explicit topology variables

  During subsetting
  As part of analysis (e.g. neighboring cells)

  When to use it?
  Feed output into another analysis package (e.g. VisIt)
  Server-side data reduction prior to transfer
  Creation of derived datasets
  Interpolate to regular grid

26

 What is pagoda?
◦ Command-line tools (similar to NCO)
◦ C++ API for writing custom analyses

 Under the hood
◦ Global Arrays toolkit
  Shared-memory abstraction over distributed arrays
  One-sided communication (versus MPI Send/Recv)
  Scalability up to 200K processes (Gordon Bell

Finalist at SC 2009 by Apra et. al.)
◦  Parallel Netcdf

27

 pgsub – the subsetter
◦  Select variable(s), Lat/Lon box
◦ Correctly reindexes topology variables

 Rest are slated by FY2010 end
◦  pgra – record averager
◦  pgwa – weighted average
◦  pgflint – file interpolator
◦  pgrint – grid interpolator

 ** names subject to change **

28

  Test dataset (~500 GB)
◦  24 timesteps
◦  12.1875GB per step of edge var
◦  4 kilometer resolution (R=11)
◦  Subset was 20N,-20S,160E,90E

  Roughly 6.5% of the global data

  Scalable to 2K cores
  I/O was 60%-90% of the time
◦  That’s all pgsub does
◦  Doesn’t use pnetcdf non-

blocking
◦  Achieved 4.5GB/s write, 2GB/s

read
  Morton ordering allowed for

optimization (blue) versus
“read everything” (yellow)

100

1000

10000

64

12
8

25
6

51
2

10
24

20
48

 T
im

e
(s

ec
on

ds
)

Cores

29

  Key interfaces: Dataset, Variable, Array, FileWriter,
Grid
◦  Datasets can represent one or more files

  NetCDF Markup Language support planned
◦  Variables are read-only

  Reading places data into an Array (and into memory)
  Data is not stored in memory until read from Variable
  User is responsible for managing memory
◦  Perform operations on Arrays

  Arrays are multidimensional data objects
  Dimension reduction via averaging
  Basic math (element-wise between Arrays)
  Cast arrays to different types as needed (automatic or manual)
  Access process-local data for custom operations

◦ Reminiscent of Java NetCDF API

30

 Grid interface
◦ Handles explicit topology
◦ Most grids can be represented in an

unstructured way
◦  “translation unit” for most grids
◦  Interpolation
  Grid coarsening
  From geodesic to regular

31

 Zonal/meridional operations
 Performance optimization
  Integration with other emerging grid

standards (Cubed-sphere)
 Complete support for regular grids
 Conservative interpolation

32

 LBNL/NERSC
◦ Mark Howison, Janet Jacobsen, Wes Bethel
◦ Michael Wehner

 PNNL
◦  Bruce Palmer, Annette Koontz

 Colorado State University
◦ Ross Heikes, Dave Randall

33

34

35

36

37

