
IO for High Resolution Climate 
Models 

Bruce Palmer, Karen Schuchardt, Annette Koontz PNNL 

Rob Jacob, Rob Latham ANL 

Wei-keng Liao, Northwestern 

1 



Motivation - Why is IO a big deal?   

   Climate models need to input large amounts of data before beginning 

a calculation 

   Initial conditions (for basic variables (u,v, T) and tracers) 

   Topography 

   Constant or cyclical, spatially varying forcing (ozone, SST). 


   Climate model output from a simulation is a crucial part of the 
analysis process 

   Time series analysis on output is how climate is determined. 

   Community has a long tradition of sharing output so other scientists can 

examine other features in the time series. 

   Model intercomparisons (e.g. AR5) require archived output. 

   Common output format (NetCDF) eases intercomparison and collaboration 

Several trends are putting strains on traditional I/O 
practice in climate models. 

2 



3 

Trends Impacting I/O:  Data sizes 

   Data sets will quickly approach the petabyte range 


   Running the existing GCRM at 4 km resolution and dumping data 
every 3 hours for 1 simulated year will produce 1.4 Pbytes of 
output 


   Running CCSM4 with 0.1 degree ocean and 0.24 degree 
atmosphere will produce 100TB for a century simulation 


   IO bandwidth, filesystem capacity, and archive performance will 
limit the amount of data that can be written out. 


   Data is large and takes a long time to move 

   1 Pbyte takes 28 hours to move at 10 Gbytes/s 


   64 bit offsets needed to describe files 

   A lot of IO and analysis software is still using 32 bit offsets 



4 

Trends Impacting I/O:  Data models 


   Grid types are moving beyond conventional structured 
latitude-longitude grids 

   Geodesic grid 

   Cubed-sphere grid 


   More information must be generated for general purpose 
analysis tools 

   Topology (nodes, edges) 

   Neighbor lists 

   Metadata for data interpretation 



5 

Bridges between app. 
tasks and storage 
system and combines 
operations to reduce 
“randomness” of I/O 

IBM ciod 

Maps application level 
abstractions onto 
storage abstractions 
and provides portability 

Parallel NetCDF, 
NetcDF4, HDF5, 
ADIOS 

Parallel IO Software Stack 
Application 

Application-Specific Interface 

High Level I/O Library 

I/O Middleware 

I/O Aggregation 

Parallel File System 

I/O Hardware 

Organizes accesses 
from many processes 
especially those 
using collective I/O 

MPI-IO 

Maintains logical 
space and provide 
efficient access to 
data 

PVFS, PanFS, 
GPFS, Lustre 

Isolate application 
from underlying 
libraries; provide 
higher level interface 

GIO, PIO 



I/O  Middleware: MPI-IO    


   MPI-IO is an I/O interface specification for use in MPI apps 

   Data model is same as POSIX 


   Stream of bytes in a file 

   Features: 


   Collective I/O 

   Noncontiguous I/O with MPI datatypes and file views 

   Nonblocking I/O 

   Fortran bindings (and additional languages) 


   Implementations available on most platforms 



I/O Middleware:  PNetCDF (NetCDF output 
with MPI-IO) 


   Based on NetCDF 

   Derived from their source code 

   API slightly modified 

   Final output is indistinguishable from serial NetCDF file (as 

long as data is small enough) 


   Additional Features 

   Noncontiguous I/O in memory using MPI datatypes 

   Noncontiguous I/O in file using sub-arrays 

   Collective I/O 


   Unrelated to NetCDF-4 work 



Why do we need an “Application Specific 
Interface” layer? 

   IO Libraries at multiple levels in the stack are under 

development and optimization; collaborations between 
library developers and applications are necessary 


   Competing high level libraries and data formats 


   Different libraries may be required for efficient 
performance on different architectures 


   Translate data decomposition between model’s and “I/O 
friendly”. 



9 

GIO – Geodesic IO API for GCRM GIO – Geodesic IO API for GCRM 


   Geodesic Grid 

   Generate from recursive bisection of icosahedron 


   10 logically square panels plus two points for the north and south 
poles 



10 

GIO: Linearization 

N S 0 1 2 3 4 5 6 7 8 9

Poles 
Panels 

Morton-ordering 
within panels. Self- 
similar path 
guarantees data 
ordering is 
independent of 
number of 
processors 

Geodesic Grid 



11 

GIO: Approach and Capabilities 


   Provide a simple, extensible interface between the GCRM 
application and underlying parallel IO libraries 


   Capabilities 

   Support multiple high level IO apis (pnetcdf, netcdf4, etc) 

   Provide additional application level optimization 

   Ensure that metadata is easily maintained 

   Flexible control over what/how to write and how to partition data 

across files 

   Restart files 


   Status 

   Multilevel Grid 

   Hydrostatic Code  

   Blue team GCRM  



12 

Why do we need to do messaging? 


   Need to organize data before writing to disk 

   Having all processors writing concurrently creates 

contention for limited resources on large number of 
processors 


   Libraries ability to organize data into large writes can be 
limited, although this capability is constantly improving 


   Local reformatting/rearranging in the IO layer can be used 
to eliminate striding (fragmented writes) in the file 



13 

GIO: Messaging and Data Aggregation 

   Use a reduced number of processes for I/O to minimize 

contention 

Data block layout Direct messaging Interleaved messaging 



GIO Results 

14 


   Bandwidth on NERSC Franklin machine for 4 km grid 
using 2560 and 10240 processors 

Direct 

Interleaved 

Direct/10240 



Data aggregation in PnetCDF 


   New non-blocking I/O enables data aggregation 

   Noncontiguous small-sized requests can be aggregated into 

large, contiguous ones 

   Parallel file systems serve better for large, contiguous requests 

   Combined with MPI collective I/O provides much better 

bandwidths 

do i = 1, num_vars 
     nfmpi_iput_vara_real(ncid, i, . . .) 
enddo 
. . . 
nfmpi_wait_all(ncid, num_vars, reqs, st) 



Improvement by I/O aggregation 


   Franklin, Cray XT4 @ 
NERSC 

   Lustre with stripe size 1MB, 

40 stripe count, 16 GB/sec 
peak I/O bandwidth 


   GCRM, atmos 

   4 time-step dumps 

   640pe, resolution=6 

   1280pe, resolution=10 

   2560pe, resolution=11 



GIO Current and Future Work 


   Restart files 

   Successful GCRM integration 

   Refactoring to simplify output control 

   Averaging variables over time intervals before writing 

   Coarsening of data onto lower resolution grid before 

writing 

   Regional data dumps 

   Non-blocking writes 



Goals for Parallel I/O in CCSM 

   Provide a single interface to multiple I/O options:  

pnetcdf, binary with MPI-IO, “plain” netcdf. 


   General enough to be used as I/O interface in all CCSM 
components.  


   Simple interface for component developers to 
implement. 


   Extensible for future I/O technology 


   Preserve format of input/output files  


   Supports 1D, 2D and 3D arrays 



PIO Terms and Concepts: 


   3 modes of writing within PIO currently available 



   PIO + MPI-IO:  (“binary mode”).   Call MPI-IO directly to write binary 
files 


   PIO + NetCDF (“netcdf mode” or “serial mode”).    Gather pieces of 
data to node 0 (or other designated node) one piece at a time for 
writing netcdf files. 


   PIO + PNetCDF (“pnetcdf mode”).   PIO calls PNetCDF directly to do 
parallel write of netcdf file. 


   Application level calls look the same for each method! 


   PIO also performs messaging for same reasons as GIO. 



PIO status: 

   PIO API defined 


   PIO included in recent release of CCSM4.  Used by all 
components. 


   Early feasibility success:   Some high-res CAM-HOMME 
runs not possible without using PIO for reading input. 


   Set up PIO Google group with publicly readable email 
list.   Also set up open source code repository at 
GoogleCode 



PIO’s comprehensive, extendable test suite 

   Two methods for setting up a grid on which to test I/O: 


   Very flexible methods for setting a 3D rectangular grid of arbitrary size 
and regular decompositions of that grid in 1, 2 or 3 dimensions   OR 


   Write out decomposition from real code (CAM, POP) and read it back 
in for testing (pio_writedof, pio_readdof)! 


   Grid, decomposition and I/O method to test all specified in a 
namelist. 


   Test program testpio.F90: 

   Reads namelist 

   Generates test data (integers, 4-byte reals and 8-byte reals) 

   Writes data with specified method (binary, netcdf, pnetcdf) 

   Reads data back and checks for correctness 

   Times reads and writes. 



PIO Recent Results: 

   PIO is a success as an enabling technology:   Allows 

simulations never before possible. 

   CAM FV 0.25 degree with trop_mam3 chemistry on jaguar 


   CAM FV 0.25 degree with trop_mozart chemistry and a total of 
399 tracers on jaguar. 


   PIO timings: 

   PIO with MPI-IO is always fast.  1-2GB/s read/write obtained. 

   PIO with pnetcdf: 


   FV 2-degree:  pnetcdf now twice as fast as netcdf 

   HOMME on 512 BG/P nodes:  pnetcdf now 100x faster than 

netcdf 

   FV 0.5 degree with trop-mozart:  pio 2x faster than native. 



PIO future work 


   Add more unit tests based on real decompositions 


   Understanding performance across zoo of parallel I/O 
hardware/software. 


   Ask other applications to try PIO and provide feedback. 



24 

Acknowledgements 

This research is supported by the U. S.  Department of Energy's Office of 
Science under the Scientific Discovery through Advanced Computing 
(SciDAC) program.  


